Prefrontal Oscillations Bias Pathways for Thought and Action

Jason Sherfey^{1,2,3} <sherfey@mit.edu>, Salva Ardid¹, Joachim Hass^{1,4}, Michael Hasselmo², Nancy Kopell¹

¹Dept. of Mathematics & Statistics, ²Psychological & Brain Sci., Boston University, ³Picower Inst. for Learning & Memory, MIT, ⁴Central Inst. of Mental Health, Heidelberg University

Introduction

Oscillatory neural activity is a common feature of brain dynamics. In vitro experiments have demonstrated that different brain regions can produce network oscillations at different frequencies. In vivo experiments have shown that field potential oscillations in prefrontal cortex (PFC) at beta- (15-35Hz) and gamma-(35-80Hz) frequencies undergo task-related modulations in their power and synchrony. Despite the wealth of experimental evidence suggesting changes in oscillation frequency and synchrony are functionally significant, little remains known about the mechanisms by which they affect processing in downstream networks. Using a computational model of the PFC network [1-2], implemented with the DynaSim toolbox [3], we explored the natural, resonant, and competitive dynamics of PFC networks and how the task-modulated properties of oscillatory signals affect those dynamics. Our model predicts that the experimentally-observed PFC beta and gamma oscillations could leverage population frequency-resonance to bias responses in an output layer, and that taskrelated modulation of oscillatory synchronization could govern the flexible routing of signals in service of cognitive processes like output gating from a working memory (WM) buffer and the selection of rule-based actions.

Rhythm-mediated biased competition

Inputs:

Competitive Dynamics

Cognitive operations

Rhythms and resonance in PFC network

We explored the impact of modulating the dynamical state of input signals on cortical dynamics using an experimentally-constrained, Hodgkin-Huxley type network model of prefrontal cortex.

Methods

PFC network model PFC competition model (Target Pathway) (Distractor Pathway) (NaF,KDR,NaP,Ks,Ca,KCa) **PC**_D **PC**_T PC target input — dend ----> dend dend input (NaF,KDR) AMPA IN soma soma GABA distractor output output target output **Biophysical PFC L5 cell model:** $C_{m}\frac{dV_{PC}}{dt} = I_{ex}^{t}(t) - I_{Na} - I_{K} - I_{Na}^{P} - I_{Ca} - I_{KC}^{a} - I_{M} - I_{h} - I_{leak}$ Inputs from source network Output measures

Asynchronous Input Rhythmic Inputs Probe Resonance Probe Natural Rhythm Source spike rate Sine wave $\lambda(t) = r_{in}$ λ(t) λ(t) time (s) Source network Square wave: Low sync.

time (s)

w/ max power ("pop. freq.")

distractor

input

Max Distractor suppression occurs when Target output pop. freq. peaks for inputs oscillating at the f_{pop} -resonant freq. (28Hz).

Resonant input rhythms (f_{inp}=28Hz) select contextdependent $S \rightarrow R$ mappings (for rule-based action).

Tuning the preferred frequency

Nonspecific input selects beta vs. gamma by setting target resonant frequency.

Resonant biases can gate rate-coded signals

Parallel Pathways

frequency-based

propagation of

 PC_{τ} index

mixing resonant signals

PC index

frequency-based gating

PC index

 $\mathbf{f}_{inp} = \gamma$

MUUUUU

PC index

Linp

Convergent Pathways

Oscillatory Dynamics

20

spectral frequency (Hz)

N (nat. freq.)

60

40

input rate, \bar{r}_{inp} (sp/s)

2000

10└─ 500

PC_p index

Conclusions

- Oscillatory gating: Strong feedback inhibition and sparse PC activity enable population rhythm frequency to govern response selection (gating) instead of PC firing rate. See [2] for more info.
- Can control which input-output mappings are engaged by controlling participation in a pop. frequency-resonant oscillation.
- Separation of representations in superficial and deep layers allows working memory in superficial layers to be distinct from gated output (beta).
- Can flexibly tune resonant frequency via input rate and tune degree of response via input synchrony.

References

[1] Durstewitz, Daniel, and Jeremy K. Seamans. Neural Networks 15.4 (2002): 561-572. [2] Sherfey, Jason S., et al. bioRxiv, 364729 (provisionally accepted by PLoS Comp Biol). [3] Sherfey, Jason S., et al. Frontiers in neuroinformatics 12 (2018): 10.

Acknowledgements

Strong feedback inhibition synchronizes PC activity and produces oscillatory network response to both asynchronous and periodic inputs. Output pop. oscillation frequency, f_{pop}, is constrained

20

30

input frequency, f_{inp} (Hz)

40 50

This work was supported by grants ARO W911NF-12-R-0012-02 and NSF DMS-1042134 to NK and

ONR MURI N00014-16-1-2832 to MH.

PC_p index

 PC_{τ} index