Prefrontal Oscillations Bias Pathways for Thought and Action
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;o Introduction / Rhythm-mediated biased competition

Oscillatory neural activity is a common feature of brain dynamics. In vitro experiments have Competitive Dynamics Cognitive operations
demonstrated that different brain regions can produce network oscillations at different frequencies. In

vivo experiments have shown that field potential oscillations in prefrontal cortex (PFC) at beta- (15- Target Pathway Distractor Pathway Tar'géf%n;fhx\:,ay Dis?fat;?cf;fggiﬁ@tay
35Hz) and gamma-(35-80Hz) frequencies undergo task-related modulations in their power and O=10ms PC. PC, ae 4
synchrony. Despite the wealth of experimental evidence suggesting changes in oscillation frequency JLIL]-»{dend dend [e——— o wrigﬁ
and synchrony are functionally significant, little remains known about the mechanisms by which they (med. sync.) ’;:@:;‘ (async.) | i = P (= B) j |
affect processing in downstream networks. Using a computational model of the PFC network [1-2], (Fis ) T = (Fi) L |
Implemented with the DynaSim toolbox [3], we explored the natural, resonant, and competitive - B Inputs: |
dynamics of PFC networks and how the task-modulated properties of oscillatory signals affect those " re e (e.g., from L3 PFC)

dynamics. Our model predicts that the experimentally-observed PFC beta and gamma oscillations 25 ” ————————————————— WM Reservoir:

could leverage population frequency-resonance to bias responses in an output layer, and that task-
related modulation of oscillatory synchronization could govern the flexible routing of signals in
service of cognitive processes like output gating from a working memory (WM) buffer and the
selection of rule-based actions. 0
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We explored the impact of modulating the dynamical state of input signals on cortical dynamics using x fZ o | ; | S L e
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PFC network model PFC competition model Target output pop. freg. peaks for inputs Resonant input rhythms (f;,,=28Hz) select context-

(NaF. KR NaP Ks.Ca KCal (Target pathway) (Distractor pathway) oscillating at the f,,,-resonant freq. (28Hz). dependent S->R mappings (for rule-based action).
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T 20 5 | e frequency to govern response selection (gating) instead of PC firing rate. See [2] for more info.
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