

Cortical Rhythms and Interneurons for Routing and Reading Working Memory

Jason Sherfey GRS Neurobiology of Cognition 19-Jul-2014

<u>cell types</u> L,R: (Na,K,L) E: (multiple models)

Neural routing model

More active cells drive more output

More active cells drive more output

Shared input increases spike coherence

measure spike coherence:

Spike coherence facilitates routing

Frequency [Hz]

2

0

0.5

1

1,5

Time (s)

2

2,5

Prefrontal cortex generates rhythms

horm. LFP Power (mV^c/Hz)

0.03

measure rhythm strength: PA = (area around spectral peak)

Feedback inhibition supports rhythms

Routing increases with rhythm power

- non-monotonic relation between routing and inhibition
- linear increase in routing with rhythm power
- breaks down for shorter time constants (faster rhythms)

Application to read-out of working memory (in progress)

Rhythm allows selective WM read-out

9

Implications for working memory

Conclusions

- Beta rhythms enhance routing by increasing spike coherence
- <u>Application to working memory</u>: coherent inputs to selected CB cells determine which persistent assemblies can drive downstream targets

Acknowledgments

- Joint with N Kopell
- Consulting from: H Barbas, M Whittington, F LeBeau, N Adams