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el Cortical rhythms and interneurons for reading working memory .

Introduction Working memory maintenance in L2/3 DLPFC ACC control mechanisms for WM readout

Dorsolateral prefrontal cortex (DLPFC) maintains working memory (WM) In the _ o _ _ - | | | | o
persistent spiking of pyramidal cells. Experimental and theoretical studies have Persistent spiking maintained by slow recurrent excitation Persistent reservoir-driven Sl interneurons gate RS spiking

shown this activity depends on slow excitation between recurrently connected
Cue |—+(E) (E) (E) (E) (E
SIS, + FIMT

neurons [1]. Increasingly, working memory studies are characterizing network
NMDA

osclillations In the local field potential that are coincident with persistent activity.
Relatively little is known about the generation of these rhythms, their relationship to
persistent spiking, or the mechanisms that gate and appropriately direct
communication of working memory to other cortical and subcortical areas. In many
paradigms, DLPFC activity Is partially driven by anterior cingulate cortex (ACC),
which selectively synapses on superficial calbindin-positive (CB) interneurons. We
hypothesize that ACC-mediated CB Inhibition can coordinate persistent
subassemblies to drive deep-layer DLPFC principal cells in asynchronous and
rhythmic modes. To Investigate potential mechanisms, we developed a
computational model of laminar DLPFC including multiple classes of interneurons,
superficial and deep layers, and mechanisms providing persistence & rhythmicity.

Methods

Laminar DLPFC Computational model Rhythmic subassembly readout of asynchronous reservoir

Synchrony disrupts
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